Home Energy Can Synthetic Inertia from Wind Power Stabilize Grids?

Can Synthetic Inertia from Wind Power Stabilize Grids?

61
SHARE


As renewable power displaces more and more coal, gas, and nuclear generation, electricity grids are losing the conventional power plants whose rotating masses have traditionally helped smooth over glitches in grid voltage and frequency. One solution is to keep old generators spinning in sync with the grid, even as the steam and gas turbines that once drove them are mothballed. Another emerging option will get a hearing next week at the 15th International Workshop on Large-Scale Integration of Wind Power in Vienna: synthetic inertia.

Synthetic inertia is achieved by reprogramming power inverters attached to wind turbines so that they emulate the behavior of synchronized spinning masses.

Montréal-based Hydro-Québec TransÉnergie, which was the first grid operator to mandate this capability from wind farms, will be sharing some of its first data on how Québec’s grid is responding to disruptive events such as powerline and power plant outages. “We have had a couple of events quite recently and have been able to see how much the inertia from the wind power plants was working,” says Noël Aubut, professional engineer for transmission system planning at Hydro-Québec. 

The short answer is good, but not good enough to support massive wind power growth. Québec has about 3,300-MW of wind power today, but Canada’s wind industry is calling for 8,000-megawatts more by 2025. Turbine manufacturers are upping their synthetic inertia technology to pave the way.