Home Energy Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries

57
SHARE


Lithium-sulfur batteries (Li-S) can hold as much as five times the energy per unit mass that lithium-ion (Li-ion) batteries can. However, Li-S batteries suffer from the propensity for polysulfides to pass through the cathode, foul the electrolyte, then pass through to the other electrode, depleting it of sulfur after just a few charge-discharge cycles. This phenomenon is known as the “shuttle effect.”

Now researchers at the University of Texas at Austin have developed an electrode structure for a Li-S battery that makes use of coaxial polypyrrole-manganese dioxide (PPy-MnO2) nanotubes. This novel electrode combats the shuttle effect by essentially encapsulating the electrodes with the nanotubes.