Home Energy Carbon Nanotubes Make Big Push in Plasmonic Circuits

Carbon Nanotubes Make Big Push in Plasmonic Circuits

39
SHARE


The field of plasmonics—which exploits the waves of electrons generated when photons strike a metal structure in order to carry out optoelectronic processes—has been building momentum in the research community over the past half decade. This interest is well placed. Plasmonics has made all sorts of interesting things possible, such as confining wavelengths of light to design smaller photonic devices. During that time, a range of two-dimensional materials, including black phosphorus and graphene, has enabled this growing interest. But the granddaddy of nanomaterials—the single-walled carbon nanotube—may still have a role to play in this exploding field.

Researchers at Peking University in China have gone back to single-walled carbon nanotubes (SWNTs) and used them as the active channel materials in the construction of surface plasmon polariton (SPP)-based plasmonic interconnect circuits. (Just as a bit of a primer, the waves of electrons that are generated when photons hit a metal structure are called either surface plasmons when referring to the oscillations in charge alone, or surface plasmon polaritons when referring to both the charge oscillations and the electromagnetic wave.)